Course Code	Course Name	L-T-P-Credits	Year of Introduction
CE402 | ENVIRONMENTAL ENGINEERING – II | 3-0-0-3 | 2016

Prerequisites: CE405 Environmental Engineering- I

Course objectives:
- To understand the various sources and characteristics of wastewater
- To know the various treatment methods available for wastewater treatment

Syllabus: Wastewater, sources, characteristics, oxygen demand. Design of sewers, Circular sewers, Partial flow and full flow conditions. Sewer appurtenances, Disposal of wastewater, Streeter Phelps equation, Oxygen sag curve. Treatment methods, Aerobic and anaerobic methods. Design of various treatment units: Screening, Grit chamber, Sedimentation tank, Activated Sludge process, Trickling filter, Rotating biological contactor, Septic tanks, Imhoff tanks, Oxidation ditches, Oxidation ponds, Upflow anaerobic sludge blanket reactors, Sludge digestion, Sludge drying bed.

Course Outcomes:
The students will
- have an understanding of the various types of treatment methods for wastewater
- know the design aspects of various treatment units in a wastewater treatment plant.

Text Books

References
2. J. Arceivala, Shyam R. Asolekar, Wastewater Treatment for Pollution Control and Reuse, McGrawhill Education, 2007

COURSE PLAN

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
<th>Sem. Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Wastewater- Sources and flow rates, Domestic wastewater, Estimation of quantity of wastewater, Dry weather flow, storm water flow, Time of concentration</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Sewers, Design of circular sewers under full and partial flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Sewer appurtenances-Man holes, Catch basin, flushing devices, Inverted siphon. Ventilation of sewers. Sewage, Sewerage, Systems of sewerage Sewage characteristics- Physical, chemical and biological parameters, Biological oxygen demand, first stage BOD, Chemical oxygen demand, Relative stability, Population equivalent.</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>III</td>
<td>Waste water disposal systems- Self purification of streams, Dilution -Oxygen sag curve, Streeter Phelp’s Equation, land treatment Treatment of sewage-Preliminary and Primary treatment -Theory and design of Screen, Grit chamber, Detritus chamber, Flow equalization tank and Sedimentation tank.</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>IV</td>
<td>Secondary treatment methods-Contact bed, Intermittent sand filter, Theory and design of Trickling filter, Activated sludge process, Trickling filter-High rate, standard. Rotating biological contactor</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>V</td>
<td>Design of Septic tank and Imhoff tank, Principle and working of Oxidation ditch and oxidation ponds. Aerated lagoons, Design of upflow anaerobic sludge blanket reactors</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>VI</td>
<td>Sludge treatment and disposal-Methods of thickening, Sludge digestion- Anaerobic digestion, Design of sludge digestion tanks and Sludge drying beds, methods of sludge disposal</td>
<td>8</td>
<td>20</td>
</tr>
</tbody>
</table>

EXTERNAL EVALUATION:

Maximum Marks : 100 Exam Duration: 3 Hrs

QUESTION PAPER PATTERN (External Evaluation):

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note: 1. Each part should have at least one question from each module

2. Each question can have a maximum of 4 subdivisions (a,b,c,d)